3.464 \(\int \frac {x (d+c^2 d x^2)}{(a+b \sinh ^{-1}(c x))^{3/2}} \, dx\)

Optimal. Leaf size=236 \[ \frac {\sqrt {\pi } d e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}+\frac {\sqrt {\pi } d e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}-\frac {2 d x \left (c^2 x^2+1\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}} \]

[Out]

1/4*d*exp(2*a/b)*erf(2^(1/2)*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/c^2+1/4*d*erfi(2^(1/2)
*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/c^2/exp(2*a/b)+1/4*d*exp(4*a/b)*erf(2*(a+b*arcsinh
(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/c^2+1/4*d*erfi(2*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/c^2
/exp(4*a/b)-2*d*x*(c^2*x^2+1)^(3/2)/b/c/(a+b*arcsinh(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.77, antiderivative size = 236, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 9, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {5777, 5699, 3312, 3307, 2180, 2204, 2205, 5779, 5448} \[ \frac {\sqrt {\pi } d e^{\frac {4 a}{b}} \text {Erf}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{\frac {2 a}{b}} \text {Erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}+\frac {\sqrt {\pi } d e^{-\frac {4 a}{b}} \text {Erfi}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{-\frac {2 a}{b}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}-\frac {2 d x \left (c^2 x^2+1\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(d + c^2*d*x^2))/(a + b*ArcSinh[c*x])^(3/2),x]

[Out]

(-2*d*x*(1 + c^2*x^2)^(3/2))/(b*c*Sqrt[a + b*ArcSinh[c*x]]) + (d*E^((4*a)/b)*Sqrt[Pi]*Erf[(2*Sqrt[a + b*ArcSin
h[c*x]])/Sqrt[b]])/(4*b^(3/2)*c^2) + (d*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]]
)/(2*b^(3/2)*c^2) + (d*Sqrt[Pi]*Erfi[(2*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*b^(3/2)*c^2*E^((4*a)/b)) + (d*S
qrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(2*b^(3/2)*c^2*E^((2*a)/b))

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5699

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c, Subst[Int[
(a + b*x)^n*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IG
tQ[2*p, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 5777

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[((f*x)^m*Sqrt[1 + c^2*x^2]*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^(n + 1))/(b*c*(n + 1)), x] + (-Dist[(f*m*d^IntP
art[p]*(d + e*x^2)^FracPart[p])/(b*c*(n + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p -
1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x] - Dist[(c*(m + 2*p + 1)*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(b*f*(
n + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && LtQ[n, -1] && IGtQ[m, -3] && IGtQ[2*p, 0]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {x \left (d+c^2 d x^2\right )}{\left (a+b \sinh ^{-1}(c x)\right )^{3/2}} \, dx &=-\frac {2 d x \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {(2 d) \int \frac {\sqrt {1+c^2 x^2}}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx}{b c}+\frac {(8 c d) \int \frac {x^2 \sqrt {1+c^2 x^2}}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx}{b}\\ &=-\frac {2 d x \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {(2 d) \operatorname {Subst}\left (\int \frac {\cosh ^2(x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{b c^2}+\frac {(8 d) \operatorname {Subst}\left (\int \frac {\cosh ^2(x) \sinh ^2(x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{b c^2}\\ &=-\frac {2 d x \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {(2 d) \operatorname {Subst}\left (\int \left (\frac {1}{2 \sqrt {a+b x}}+\frac {\cosh (2 x)}{2 \sqrt {a+b x}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{b c^2}+\frac {(8 d) \operatorname {Subst}\left (\int \left (-\frac {1}{8 \sqrt {a+b x}}+\frac {\cosh (4 x)}{8 \sqrt {a+b x}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{b c^2}\\ &=-\frac {2 d x \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {d \operatorname {Subst}\left (\int \frac {\cosh (2 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{b c^2}+\frac {d \operatorname {Subst}\left (\int \frac {\cosh (4 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{b c^2}\\ &=-\frac {2 d x \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {d \operatorname {Subst}\left (\int \frac {e^{-4 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c^2}+\frac {d \operatorname {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c^2}+\frac {d \operatorname {Subst}\left (\int \frac {e^{2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c^2}+\frac {d \operatorname {Subst}\left (\int \frac {e^{4 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c^2}\\ &=-\frac {2 d x \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {d \operatorname {Subst}\left (\int e^{\frac {4 a}{b}-\frac {4 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{b^2 c^2}+\frac {d \operatorname {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{b^2 c^2}+\frac {d \operatorname {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{b^2 c^2}+\frac {d \operatorname {Subst}\left (\int e^{-\frac {4 a}{b}+\frac {4 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{b^2 c^2}\\ &=-\frac {2 d x \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {d e^{\frac {4 a}{b}} \sqrt {\pi } \text {erf}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {d e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}+\frac {d e^{-\frac {4 a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {d e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.46, size = 227, normalized size = 0.96 \[ \frac {d e^{-\frac {4 a}{b}} \left (\sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {4 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )+\sqrt {2} e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )-e^{\frac {4 a}{b}} \left (\sqrt {2} e^{\frac {2 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )+e^{\frac {4 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {4 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )+2 \sinh \left (2 \sinh ^{-1}(c x)\right )+\sinh \left (4 \sinh ^{-1}(c x)\right )\right )\right )}{4 b c^2 \sqrt {a+b \sinh ^{-1}(c x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x*(d + c^2*d*x^2))/(a + b*ArcSinh[c*x])^(3/2),x]

[Out]

(d*(Sqrt[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, (-4*(a + b*ArcSinh[c*x]))/b] + Sqrt[2]*E^((2*a)/b)*Sqrt[-((a +
b*ArcSinh[c*x])/b)]*Gamma[1/2, (-2*(a + b*ArcSinh[c*x]))/b] - E^((4*a)/b)*(Sqrt[2]*E^((2*a)/b)*Sqrt[a/b + ArcS
inh[c*x]]*Gamma[1/2, (2*(a + b*ArcSinh[c*x]))/b] + E^((4*a)/b)*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, (4*(a + b*A
rcSinh[c*x]))/b] + 2*Sinh[2*ArcSinh[c*x]] + Sinh[4*ArcSinh[c*x]])))/(4*b*c^2*E^((4*a)/b)*Sqrt[a + b*ArcSinh[c*
x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c^{2} d x^{2} + d\right )} x}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x, algorithm="giac")

[Out]

integrate((c^2*d*x^2 + d)*x/(b*arcsinh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (c^{2} d \,x^{2}+d \right )}{\left (a +b \arcsinh \left (c x \right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x)

[Out]

int(x*(c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c^{2} d x^{2} + d\right )} x}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x, algorithm="maxima")

[Out]

integrate((c^2*d*x^2 + d)*x/(b*arcsinh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x\,\left (d\,c^2\,x^2+d\right )}{{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(d + c^2*d*x^2))/(a + b*asinh(c*x))^(3/2),x)

[Out]

int((x*(d + c^2*d*x^2))/(a + b*asinh(c*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ d \left (\int \frac {x}{a \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} \operatorname {asinh}{\left (c x \right )}}\, dx + \int \frac {c^{2} x^{3}}{a \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} \operatorname {asinh}{\left (c x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c**2*d*x**2+d)/(a+b*asinh(c*x))**(3/2),x)

[Out]

d*(Integral(x/(a*sqrt(a + b*asinh(c*x)) + b*sqrt(a + b*asinh(c*x))*asinh(c*x)), x) + Integral(c**2*x**3/(a*sqr
t(a + b*asinh(c*x)) + b*sqrt(a + b*asinh(c*x))*asinh(c*x)), x))

________________________________________________________________________________________